q-Deformed character theory for infinite-dimensional symplectic and orthogonal groups
نویسندگان
چکیده
منابع مشابه
Character Expansions for the Orthogonal and Symplectic Groups
Formulas for the expansion of arbitrary invariant group functions in terms of the characters for the Sp(2N), SO(2N + 1), and SO(2N) groups are derived using a combinatorial method. The method is similar to one used by Balantekin to expand group functions over the characters of the U(N) group. All three expansions have been checked for all N by using them to calculate the known expansions of the...
متن کاملq-Deformed Orthogonal and Pseudo-Orthogonal Algebras and Their Representations
Deformed orthogonal and pseudo-orthogonal Lie algebras are constructed which differ from deformations of Lie algebras in terms of Cartan subalgebras and root vectors and which make it possible to construct representations by operators acting according to Gel’fand–Tsetlin-type formulas. Unitary representations of the q-deformed algebras Uq(son,1) are found. AMS subject classifications (1980). 16...
متن کاملq-Deformed Two-Dimensional Yang-Mills Theory and Hecke Algebras
We derive the q-deformation of the chiral Gross-Taylor holomorphic string large N expansion of two dimensional SU (N ) Yang-Mills theory. Delta functions on symmetric group algebras are replaced by the corresponding objects (canonical trace functions) for Hecke algebras. The role of the Schur-Weyl duality between unitary groups and symmetric groups is now played by q-deformed Schur-Weyl duality...
متن کاملEigendistributions for Orthogonal Groups and Representations of Symplectic Groups
We consider the action of H = O(p, q) on the matrix space Mp+q,n(R). We study a certain orbit O of H in the null cone N ⊆ Mp+q,n(R) which supports an eigendistribution dνO for H . Using some identities of Capelli type developed in the Appendix, we determine the structure of G̃ = Sp(2n,R)∼-cyclic module generated by dνO under the oscillator representation of G̃ (the metaplectic cover of G = Sp(2n(...
متن کاملInvariant Fields of Symplectic and Orthogonal Groups
The projective orthogonal and symplectic groups POn(F ) and PSpn(F ) have a natural action on the F vector space V ′ = Mn(F ) ⊕ . . . ⊕ Mn(F ). Here we assume F is an infinite field of characteristic not 2. If we assume there is more than one summand in V , then the invariant fields F (V )n and F (V )n are natural objects. They are, for example, the centers of generic algebras with the appropri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Selecta Mathematica
سال: 2020
ISSN: 1022-1824,1420-9020
DOI: 10.1007/s00029-020-00572-8